Properties of single voltage-dependent K+ channels in dendrites of CA1 pyramidal neurones of rat hippocampus.

نویسندگان

  • Xixi Chen
  • Daniel Johnston
چکیده

Voltage-dependent K(+) channels in the apical dendrites of CA1 pyramidal neurones play important roles in regulating dendritic excitability, synaptic integration, and synaptic plasticity. Using cell-attached, voltage-clamp recordings, we found a large variability in the waveforms of macroscopic K(+) currents in the dendrites. With single-channel analysis, however, we were able to identify four types of voltage-dependent K(+) channels and we categorized them as belonging to delayed-rectifier, M-, D-, or A-type K(+) channels previously described from whole-cell recordings. Delayed-rectifier-type K(+) channels had a single-channel conductance of 19 +/- 0.5 pS, and made up the majority of the sustained K(+) current uniformly distributed along the apical dendrites. The M-type K(+) channels had a single-channel conductance of 11 +/- 0.8 pS, did not inactivate with prolonged membrane depolarization, deactivated with slow kinetics (time constant 100 +/- 6 ms at -40 mV), and were inhibited by bath-applied muscarinic agonist carbachol (10 microm). The D-type K(+) channels had a single-channel conductance of around 18 pS, and inactivated with a time constant of 98 +/- 4 ms at +54 mV. The A-type K(+) channels had a single-channel conductance of 6 +/- 0.6 pS, inactivated with a time constant of 23 +/- 2 ms at +54 mV, and contributed to the majority of the transient K(+) current previously described. These results suggest both functional and molecular complexity for K(+) channels in dendrites of CA1 pyramidal neurones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kv4 potassium channel subunits control action potential repolarization and frequency-dependent broadening in rat hippocampal CA1 pyramidal neurones.

A-type potassium channels regulate neuronal firing frequency and the back-propagation of action potentials (APs) into dendrites of hippocampal CA1 pyramidal neurones. Recent molecular cloning studies have found several families of voltage-gated K(+) channel genes expressed in the mammalian brain. At present, information regarding the relationship between the protein products of these genes and ...

متن کامل

ION CHANNELS Voltage-gated ion channels in dendrites of hippocampal pyramidal neurons

The properties and distribution of voltage-gated ion channels contribute to electrical signaling in neuronal dendrites. The apical dendrites of CA1 pyramidal neurons in hippocampus express a wide variety of sodium, calcium, potassium, and other voltage-gated channels. In this report, we provide some new evidence for the role of the delayedrectifier K channel in shaping the dendritic action pote...

متن کامل

Effects of Ginkgo biloba extract on the structure of Cornu Ammonis in aged rat: A morphometric study

Objective(s):Growing evidence indicates that extract of Ginkgo biloba (EGb) attenuates hippocampal-dependent memory deficit in aged individuals; however, very little is known about the effect of EGb on the structure of hippocampus. Therefore we examined the EGb-induced morphological changes of the Cornu Ammonis (CA) region in aged rats. Materials and Methods: Sixteen aged male Wistar rats, 24 ...

متن کامل

Dendritic distributions of lh channels in experimentally-derived multi-compartment models of oriens-lacunosum/moleculare (O-LM) hippocampal interneurons

(2015) Dendritic distributions of I h channels in experimentally-derived multi-compartment models of oriens-lacunosum/moleculare (O-LM) hippocampal interneurons. The O-LM cell type mediates feedback inhibition onto hippocampal pyramidal cells and gates information flow in the CA1. Its functions depend on the presence of voltage-gated channels (VGCs), which affect its integrative properties and ...

متن کامل

Intrinsic Ca -dependent theta oscillations in apical dendrites of hippocampal CA1 pyramidal cells in vitro

Hansen AK, Nedergaard S, Andreasen M. Intrinsic Ca -dependent theta oscillations in apical dendrites of hippocampal CA1 pyramidal cells in vitro. J Neurophysiol 112: 631–643, 2014. First published May 14, 2014; doi:10.1152/jn.00753.2013.—Behavior-associated theta-frequency oscillation in the hippocampal network involves a patterned activation of place cells in the CA1, which can be accounted fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of physiology

دوره 559 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2004